Lecture 7

In this lecture we introduce and study covering spaces in some detail.

7.1 Covering spaces

Definition 7.1. A covering is a map $p: \tilde{X} \to X$ such that there exists an open cover $\{U_{\alpha}\}$ of X, such that for every α , the preimage is a disjoint union of open sets

$$p^{-1}(U_{\alpha}) = \bigsqcup_{\beta} V_{\alpha}^{\beta},$$

and such that the restriction $p|_{V_{\alpha}^{\beta}}: V_{\alpha}^{\beta} \to U_{\alpha}$ is a homeomorphism.

Example 7.2. For $k \in \mathbb{Z}$, the maps $p_k \colon S^1 \to S^1$, $z \mapsto z^k$ are covering maps. The preimage $p^{-1}(z)$ of any point $z = \exp(2\pi i t) \in S^1$ consists of precisely k distinct points, namely $\exp(2\pi i (t+j)/k)$ for $j \in \{0, \ldots, k-1\}$. For z = 1, these are precisely the k-th complex roots of unity.

Figure 7.1: The preimage $p_7^{-1}(1)$.

Example 7.3. The map $p_{\infty} \colon \mathbb{R} \to S^1$, $t \mapsto \exp(2\pi i t)$ is a covering map. The preimage $p_{\infty}^{-1}(z)$ consists of ∞ many points.

Figure 7.2: The preimage $p_{\infty}^{-1}(1)$.

Definition 7.4. A covering $p: \tilde{X} \to X$ is called an *n*-fold covering if for all $x \in X$, $p^{-1}(x)$ consists of precisely *n* points.

Definition 7.5. Two coverings $p: Y \to X$ and $q: Z \to X$ are called **isomorphic**, if there exists a homeomorphism $h: Y \to Z$ such that $p = q \circ h$.

It is common to visualize concepts such as the isomorphism of coverings via **commutative diagrams** such as the following.

The requirement is, that all compositions in such a diagram should coincide.

Example 7.6. The coverings $p_2: S^1 \to S^1$ and $p_{-2}: S^1 \to S^1$ are isomorphic: the homeomorphism $h: S^1 \to S^1$, h(z) = -z, satisfies $p_{-2} = p_2 \circ h$.

Example 7.7. The coverings $p_2: S^1 \to S^1$ and $p_3: S^1 \to S^1$ are not isomorphic: one is a 2-fold covering and the other is a 3-fold covering.

Definition 7.8. Let $p: \tilde{X} \to X$ be a covering. A **Deck transformation** is a homeomorphism $\tau: \tilde{X} \to \tilde{X}$ such that $p \circ \tau = p$, i.e., τ gives rise to an isomorphism of a covering to itself. The set of all Deck transformations of a cover is called Deck(p).

Exercise 7.9. Show that $(Deck(p), \circ)$, where \circ is the composition of maps, is a group.

Example 7.10. The map $\tau: S^1 \to S^1, z \mapsto -z$ gives a Deck transformation for the cover $p_2: S^1 \to S^1$.

Exercise 7.11. Show that for $m \in \mathbb{Z}$, the maps $\tau_m \colon \mathbb{R} \to \mathbb{R}$, $t \mapsto t + m$, give a Deck transformation for the cover $p_{\infty} \colon \mathbb{R} \to S^1$. Conclude that $\text{Deck}(p_{\infty}) \cong \mathbb{Z}$.

7.1. COVERING SPACES

Definition 7.12. Let $p: \tilde{X} \to X$ be a covering and $f: Y \to X$ any map. A lift of f is a map $\tilde{f}: Y \to \tilde{X}$ such that $f = p \circ \tilde{f}$.

The requirement $f = p \circ \tilde{f}$ is often visualized using the following diagram.

$$\begin{array}{c} & X \\ & \tilde{f} \\ Y \xrightarrow{\tilde{f}} & \downarrow^p \\ & Y \xrightarrow{f} & X \end{array}$$

Example 7.13. Consider a loop $f: I \to S^1, t \mapsto \exp(2\pi i n t)$ and the covering p_{∞} . Then the map $\tilde{f}: I \to \mathbb{R}, t \mapsto nt$, is a lift of f.