Note that every group G_α is a subgroup of $*_{\alpha}G_\alpha$, via the inclusion that maps g to the word consisting only of g for $g \neq e$, and e to the empty word. Let

$$\iota_\alpha: G_\alpha \hookrightarrow *_{\alpha}G_\alpha$$

denote this inclusion. The free product of a collection of groups $\{G_\alpha\}_\alpha$ satisfies the following universal property.

Lemma 20.1. Let $\{\varphi_\alpha\}_\alpha$ be a collection of group homomorphisms $\varphi_\alpha: G_\alpha \to G$. Then there exists a unique map

$$*_{\alpha}\varphi_\alpha: *_{\alpha}G_\alpha \to G$$

such that $(*_{\alpha}\varphi_\alpha) \circ \iota_\alpha = \varphi_\alpha$.

Proof. Define

$$(*_{\alpha}\varphi_\alpha)(g_1 \cdots g_m) = \varphi_{\alpha_1}(g_1) \cdots \varphi_{\alpha_m}(g_m),$$

(20.1)

where we assumed that $g_i \in G_{\alpha_i}$. This clearly satisfies the property $*_{\alpha}\varphi_\alpha \circ \iota_\alpha = \varphi_\alpha$. Moreover, since every φ_α is a group homomorphism, for $g_i, g_{i+1} \in G_\alpha$ we get $\varphi(g_i)\varphi(g_{i+1}) = \varphi(g_ig_{i+1})$ and $\varphi(e_\alpha) = e$, so that $*_{\alpha}\varphi_\alpha$ is compatible with the operations bringing a word into reduced form. Therefore, $*_{\alpha}\varphi_\alpha(g \cdot h) = \varphi(g)\varphi(h)$ and we have a group homomorphism. The requirement that the restriction to the G_α satisfies $*_{\alpha}\varphi_\alpha \circ \iota_\alpha = \varphi_\alpha$ leaves one with no other choice than to define the homomorphism as in 20.1.

20.1 The Seifert-van Kampen Theorem

We now apply the free product to topology. The goal is to reduce the computation of the fundamental group of an open cover to the fundamental groups of the individual sets in the cover.

Let $X = \bigcup_\alpha A_\alpha$ be an open cover and denote by $\iota_\alpha: A_\alpha \hookrightarrow X$ and the inclusion maps. Assume that $x_0 \in \bigcap_\alpha A_\alpha$. The inclusion maps induce maps

$$(\iota_\alpha)_*: \pi_1(A_\alpha, x_0) \to \pi_1(X, x_0)$$
of the fundamental groups with base \(x_0 \). By Lemma 20.1, these maps induce a map

\[\Phi = *_\alpha (i_\alpha)_* : *_\alpha \pi_1(A_\alpha, x_0) \to \pi_1(X, x_0), \]

and these maps are compatible with the inclusion \(i_\alpha : \pi_1(A_\alpha, x_0) \hookrightarrow *_\alpha \pi_1(A_\alpha, x_0) \), in that \(*_\alpha (i_\alpha)_* \circ i_\alpha = (i_\alpha)_* \).

It is relatively easy to show that if the pairwise intersections \(A_\alpha \cap A_\beta \) are path-connected, then the induced map \(\Phi \) is surjective. In general, however, it will not be injective: the reason is that loops in \(A_\alpha \cap A_\beta \) are accounted for twice in \(*_\alpha \pi_1(A_\alpha, x_0) \), once as an element of \(\pi_1(A_\alpha, x_0) \) and once as an element of \(\pi_1(A_\beta, x_0) \). To remedy this, we have to factor such loops out, and for this we need to study the inclusion

\[i_{\alpha\beta} : A_\alpha \cap A_\beta \to A_\alpha, \]

with the induced maps \((i_{\alpha\beta})_* \) of fundamental groups. The whole setup is summarised in the following “Seifert-van Kampen” commutative diagram:

Note that every \(\omega \in \pi_1(A_\alpha \cap A_\beta, x_0) \) is represented in \(*_\alpha \pi_1(A_\alpha, x_0) \) as \((i_{\alpha\beta})_* (\omega) \), and as \((i_{\beta\alpha})_* (\omega) \). Define the set

\[U = \{(i_{\alpha\beta})_* (\omega)(i_{\beta\alpha})_* (\omega)^{-1} : \alpha, \beta, \omega \in \pi_1(A_\alpha \cap A_\beta, x_0)\}, \]

and let \(N \) be the normal closure of \(U \), i.e., the smallest normal subgroup of \(*_\alpha \pi_1(A_\alpha, x_0) \) containing \(U \). Recall that a subgroup \(H \subset G \) is called normal if it is closed under conjugation: \(gHg^{-1} = H \) for \(g \in G \). We can now formulate the Seifert-van Kampen Theorem.

Theorem 20.2. (Seifert-van Kampen) Let \(X = \bigcup_\alpha A_\alpha \) be a cover with open sets and assume \(x_0 \in \bigcap A_\alpha \). Then:

I If for all \(\alpha, \beta \), \(A_\alpha \cap A_\beta \) is path-connected, then the map

\[\Phi = *_\alpha (i_\alpha)_* : *_\alpha \pi_1(A_\alpha, x_0) \to \pi_1(X, x_0) \]

is surjective.

II If in addition for every \(\alpha, \beta, \gamma \) the intersection \(A_\alpha \cap A_\beta \cap A_\gamma \) is path-connected, then \(\ker \Phi = N \), and hence

\[\pi_1(X, x_0) \cong *_\alpha \pi_1(A_\alpha, x_0) / N. \]
20.1. THE SEIFERT-VAN KAMPEN THEOREM

Before proving this theorem, we discuss a bit what it means. Any collection of loops \([\gamma_i] \in \pi_1(A_\alpha, x_0)\) gives rise to a loop \((t_{\alpha_i})_*([\gamma_i]) = [t_{\alpha_i}(\gamma_i)]\) in \(\pi_1(X, x_0)\), and omitting the inclusion map we can simply denote it by \([\gamma_i] \in \pi_1(X, x_0)\). The induced map from the free product then looks as follows:

\[\Phi: \ast_{\alpha} \pi_1(A_\alpha, x_0) \to \pi_1(X, x_0) \]
\[[\gamma_1] \cdots [\gamma_m] \mapsto (t_{\alpha_1})_*([\gamma_1]) \cdots (t_{\alpha_m})_*([\gamma_m]) = [\gamma_1 \ast \cdots \ast \gamma_m], \]

where in the last line we consider \(\gamma_i\) as a loop in \(X\). Thus for the first part, the surjectivity, we need to derive that every loop in \(X\) based at \(x_0\) “factors” as a concatenation of loops \(\gamma_1, \ldots, \gamma_m\), with each of these in one \(A_\alpha\). This is reminiscent of the derivation of the fundamental group of \(S^n\) for \(n \geq 2\).

The fact that this map is not injective has to do with the fact that such a factorization is not unique: if \(\gamma\) is a loop in \(A_\alpha \cap A_\beta\), then it is represented in \(\pi_1(A_\alpha, x_0)\) as \((t_{\alpha\beta})([\gamma])\), and in \(\pi_1(A_\beta, x_0)\) as \((t_{\beta\alpha})([\gamma])\). Each of these can appear as a letter in a word in \(\ast_{\alpha} \pi_1(A_\alpha, x_0)\), and replacing one with the other in this word will not change the image of the word under \(\Phi\): the quotient \((t_{\alpha\beta})([\gamma])(t_{\beta\alpha})([\gamma])^{-1}\) is therefore in the kernel of \(\Phi\). The second part of the Seifert-van Kampen Theorem thus tells us that “factoring out” this kernel gives an isomorphism.

Example 20.3. Consider the sphere \(S^n\) and the cover \(U_1, U_2\) consisting of the open sets by removing the north and the south pole, respectively. The intersection \(U_1 \cap U_2\) is path-connected, so we have a surjective map

\[\Phi: \pi_1(U_1, x_0) \ast \pi_1(U_2, x_0) \to \pi_1(S^{n-1}, x_0). \]

Since \(U_1\) and \(U_2\) are contractible, the fundamental groups are the trivial group, and it follows that \(\pi_1(S^n, x_0)\) is also the group with one element. The argument does not extend to \(S^1\), since \(U_1 \cap U_2\) is disconnected.