Consider a graph $X = X^1$ consisting of a set of vertices $V = X^0$ and edges $(D^1_\alpha, \varphi_\alpha)$, where $\varphi_\alpha : S^0_\alpha \to X^0$ is the attaching map that assigns to each interval D^1_α its endpoints in the graph. Recall the characteristic map $\Phi_\alpha : D^1_\alpha \to X^1$ that maps each 1-cell to its image in the graph. We use the term edge for both a pair $(D^1_\alpha, \varphi_\alpha)$, which records combinatorial information (e.g., which are the endpoints), and for the image $\Phi_\alpha(D^1_\alpha)$ as a topological subspace of the graph.

In the following we use the convention that an edge-path in a graph is a path that can be written as a concatenation of edges:

$$\gamma = e_1 \ast \cdots \ast e_m,$$

where each e_i is an edge (in the subspace-sense). Similarly, an edge loop is an edge-path that ends where it starts.

28.1 From CW complexes to groups and back

Given a CW complex X and $x_0 \in X$, we can compute a presentation of the fundamental group $\pi_1(X, x_0)$. As the path-components that do not contain x_0 do not enter the fundamental group, we may replace X with the path component containing x_0. In addition, we can move the basepoint to lie in X^1 (or even X^0), as this does not change the structure of the fundamental group. Finally, we can restrict to the 2-skeleton, and hence assume without lack of generality that $X = X^2$ is a path-connected, two-dimensional CW complex. To compute the fundamental group we proceed as follows:

1. Find a spanning tree of $T \subset X^1$. This can be done, for example, using Dijkstra’s algorithm. Let A be the set (not union!) of edges that are not in the tree. Pasting such an edge to the graph T gives a subgraph that is homotopic to a circle S^1, i.e., an edge-cycle. As shown in the exercises, we can describe the fundamental group of X^1 as generated by these edge-cycles.

$$\pi_1(X^1, x_0) \cong \ast_{e \in A} \mathbb{Z}.$$
Every edge not in T gives a loop when adding it to T, and conversely every loop in X^1 based at x_0 is homotopic to a combination of such edge-cycles (loops that consist of traversing a cycle that arises by adding $a \in A$ along edges).

2. Let $e^2_\alpha \subset X^2$ (here we identify the open 2-cells with their images in X^2) be a 2-cell and
\[
\varphi_\alpha : S^1_\alpha \to X^1
\]
the attaching map. Recall that $\gamma_\alpha(t) = \varphi_\alpha(\exp(2\pi it))$ is a loop, and hence homotopic to an edge-loop (a loop consisting of edges). Let $x_1 \in \varphi_\alpha(S^1_\alpha)$ and let $g_\alpha : I \to X^1$ be a path with $g_\alpha(0) = x_0$ and $g_\alpha(1) = x_1$. Then
\[
\omega_\alpha = [g_\alpha * \gamma_\alpha * g_\alpha] \in \pi_1(X^1, x_0)
\]
and therefore corresponds to a reduced word u_α in A. Set $U = \{u_\alpha\}_\alpha$.

We claim that
\[
\pi_1(X, x_0) \cong \pi_1(X^1, x_0)/\langle \langle U \rangle \rangle,
\]
or in other words, that the fundamental group of X with base x_0 is presented as $\langle A \rangle U$. In fact,

- The union of the cells e^2_α together with the paths joining them to x_0 form a contractible subcomplex: $\pi_1(A, x_0) \cong 1$.

- Choose points $y_\alpha \in e^2_\alpha$ inside each of the cells e^2_α and define the subset $B = X^2 - \bigcup_\alpha \{y_\alpha\}$. Then B retracts to X^1 (we poke a “hole” into each of the 2-cells attached to X^1), and $\pi_1(B, x_0) \cong \pi_1(X^1, x_0)$.

- We have $X^2 = A \cup B$ and $A \cap B$ consists of precisely those edge-cycles starting at x_0 that make up loops homotopic to the boundaries of 2-cells, or in other words, the images of S^1_α under the attaching maps. Therefore, each element of $\pi_1(A \cap B, x_0)$ represents a word in U.

- The fundamental group of X is therefore given as
\[
\pi_1(X, x_0) \cong \pi_1(X^2, x_0) \cong \pi_1(A, x_0) * \pi_1(B, x_0)/\langle \langle U \rangle \rangle \cong \pi_1(X^1, x_0)/\langle \langle U \rangle \rangle.
\]

Figure 28.1: The graph X^2
The construction is best visualized as in Figures 28.1 and 28.2. In summary:

- Every cycle in the underlying graph X^1 corresponds to a loop based at x_0 that moves along edges from x_0 to the cycle, around the cycle, and back to x_0. Every such cycle corresponds to a generator of the fundamental group $\pi_1(X^2, x_0)$;

- Every loop in X^2 can be represented as a combination of such cycles-paths along edges. This corresponds to a reduced word in the generators of $\pi_1(X^2, x_0)$;

- A loop is null-homotopic if it is homotopic to the boundary of a 2-cell in X^2. Such loops corresponds to a relation on the set of words in $\pi_1(X^2, x_0)$.

The Seifert-van Kampen Theorem merely provides a means to formalizing the above intuitive procedure.

Example 28.1. Recall the characterization of real projective space as CW complex. Recall the cell decomposition of $\mathbb{R}P^2$ into one 0-cell, one 1-cell and one 2-cell, which can be visualized as follows.
Even though we see two points and two arcs labelled with γ, the points are identified to make one point, and the lines are identified (glued together) along the direction of the arrow. The 1-skeleton X^1 of this is just a loop consisting of a single edge, and a spanning tree consists of the only vertex in this graph. The generator of the fundamental group is thus this one cycle, whose class we denote by a (say). For the relation, we look at the loop that bounds the 2-cell: as seen in the image, this loop consists of going around the cycle twice, so it is represented by a^2. Therefore, the fundamental group is presented by $\langle a \mid a^2 \rangle$, and the corresponding group is isomorphic to $\mathbb{Z}/2\mathbb{Z}$.

Example 28.2. Just as there are different ways of describing a topological space as a CW complex, there are different ways to “present” the fundamental group. We discuss this using an illustrative example, the **Klein bottle** K.

The image shows an attempted embedding of the Klein bottle into \mathbb{R}^3; this is not possible without self-intersections. As a CW complex, the Klein bottle is usually described like a Möbius strip, but with the top and bottom sides identified as well.
The underlying 1-skeleton \(X^1 \) consists of two loops, \(a \) and \(b \), while there is only one vertex (by following the identification of the boundaries of the rectangle as indicated by the arrows, one sees that all the corners are collapsed to a single point). Therefore, the generators are the classes corresponding to the cycles \(a \) and \(b \) (which we will also denote by \(a \) and \(b \)). The single relation is the loop that forms the boundary of the rectangle and is given by \(baba^{-1} \) (formally, the class in the fundamental group of \(X^1 \) that is generated by the loop \(b * a * b * a^{-1} \)). We therefore get a presentation

\[
\langle a, b \mid baba^{-1} \rangle.
\]

In other words, all the elements in this group are words in \(a \) and \(b \) (or equivalently, binary sequences), where every occurrence of \(baba^{-1} \) is replaced with the empty word.

One might, of course, ask whether this group looks like a more familiar group, or whether it can be described in a simpler way. One way to arrive at such a simpler representation is to use a different CW-complex representation.

In this case, we can add an additional cycle \(c \) and then remove the cycle \(b \). The resulting picture can then be visualized as follows.

The resulting group presentation is then

\[
\langle a, c \mid a^2 c^2 \rangle.
\]
This is somehow easier to interpret.

By now we should have an idea of how to get a group out of a CW complex. Conversely, any group presentation leads to a topological space (in fact, a surface) whose fundamental group is isomorphic to the given group.

Theorem 28.3. For every group \(G \) there exists a path-connected two-dimensional CW complex \(X_G \) such that

\[
\pi_1(X_G) \cong G.
\]

Proof. Consider a presentation of the group (generators and relators). Construct the one skeleton \(X^1 \) of \(X_G \) as a wedge (one point union) of circles \(S^1 \), with one circle per generator. Every relator describes a loop in \(X^1 \): for example if \(ab^{-1}c^2 \) is a relator, then the loop is given by going around \(a \) once, around \(b \) once in the opposite direction, and then twice around \(c \). For each such relator take a 2-cell \(D^2_\alpha \) with boundary \(S^1_\alpha \) and define an attaching map

\[
\varphi_\alpha : S^1_\alpha \to X^1
\]

that maps the circle onto the loop specified by the relators. The resulting CW-complex \(X = X^2 \) is then a two-dimensional CW complex whose fundamental group is, by construction, isomorphic to \(G \). \(\square \)